This appendix contains a derivation of the equation for stream connectors from chapter 15.
Consider a connection set with
and similarly the energy balance
with
Herein, mass flow rates are positive when entering models (exiting the connection set). The specific enthalpy represents the specific enthalpy inside the component, close to the connector, for the case of outflow. Expressed with variables used in the balance equations we arrive at:
While these equations are suitable for device-oriented modeling, the straightforward usage of this definition leads to models with discontinuous residual equations, which violates the prerequisites of several solvers for nonlinear equation systems. This is the reason why the actual mixing enthalpy is not modelled directly in the model equations. The stream connectors provide a suitable alternative.
For simplicity, the derivation of inStream is shown at hand of 3 model components that are connected together.
The case for
The energy and mass balance equations for the connection set for 3 components are (see above):
(C.1a) | |||
(C.1b) |
The balance equations are implemented using a
(C.2a) |
(C.2b) |
Equation (C.2a) is solved for
Using (C.2b), the denominator can be changed to:
Above it was shown that an equation of this type does not yield properly formulated model equations. In the streams concept we therefore decide to split the energy balance, which consists of different branches depending on the mass flow direction. Consequently, separate energy balances are the result; each valid for specific flow directions.
In a model governing equations have to establish the specific enthalpy of fluid leaving the model based on the specific enthalpy of fluid flowing into it. Whenever the mixing enthalpy is used in a model it is therefore the mixing enthalpy under the assumption of fluid flowing into said model.
We establish this quantity using a dedicated operator
In the general case of a connection set with n components, similar considerations lead to the following.
For this case, the return value of inStream is arbitrary. Therefore, it is set to the outflow value.
In this case, inStream is continuous (contrary to
The case where
For the two components with finite mass flow rates (not the sensor), the properties discussed for two connected components still hold. The connection set equations reflect that the sensor does not any influence by discarding the flow rate of the latter. In several cases a non-linear equation system is removed by this transformation. However, inStream results in a discontinuous equation for the sensor, which is consistent with modeling the convective phenomena only. The discontinuous equation is uncritical, if the sensor variable is not used in a feedback loop with direct feedthrough, since the discontinuous equation is then not part of an algebraic loop. Otherwise, it is advisable to regularize or filter the sensor signal.
If uni-directional flow is present and an ideal splitter is modelled, the required flow direction should be defined in the connector instance with the min-attribute (the max-attribute could be also defined, however it does not lead to simplifications):
Consider the case of
results in the following equation:
inStream cannot be evaluated for a connector, on which the mass flow rate has to be negative by definition. This is not a problem since there is no requirement on the result of inStream in this case, and the following result is selected instead of the illegal division:
For the remaining connectors, inStream reduces to a simple result.
Again, the previous non-linear algebraic system of equations is removed. This means that utilizing the information about uni-directional flow is very important.
To summarize, if all mass flow rates are zero, the balance equations for stream variables (C.1) and for flows (C.2) are identically fulfilled.
In such a case, any value of